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Abstract-The dispersion model is applied to the description of the effects of shell and tubeside flow 
maldistribution. By means of this model, an efficient and versatile method of predicting transient response 
of multipass shell and tube heat exchangers is developed. The method allows for effect of maldistribution 
on transient process, influence of heat capacities of fluids and solid components, arbitrary inlet temperature 
variations and step disturbances of flow rates. General forms of initial conditions and two different flow 
arrangements are considered. A general form of the solution for steady-state and dynamic simulation is 
derived. Temperature profiles are determined with numerical inversion of the Laplace transform. Some 

examples are calculated and the effect of maldistribution is discussed. 

1. INTRODUCTION 

THE TRANSIENT performance of a shell and tube heat 

exchanger mainly results from inlet temperature and 
flow variations. Such disturbances may occur on both 
shell and tube sides simultaneously or separately. 
There are plenty of published papers which separated 
the above-mentioned two types of inlet changes. They 
were engaged either on responses to inlet temperature 
changes [l, 21 or to flow variations [3, 41. Stainthorp 
and Axon [5] described the dynamic behaviour of 
multipass heat exchangers subject to steam tem- 
perature and steam flow perturbations by the modified 
one-pass model. Forghieri and Papa [6] set up three 
different models of a counterflow heat exchanger with 
temperature disturbances and step flow variations and 
obtained the asymptotic solution to step variations of 
the flow rate by means of the Laplace transform. All 
these works are based on the conventional plug-flow 
model, i.e. no dispersion (or backmixing) occurs in 
the flow direction and the axial velocity of process 
fluid is uniform. Xuan and Roetzel [7] applied the 
shellside dispersion model to predicting dynamic 
response to both arbitrary temperature changes and 
step flow variations in parallel and counterflow heat 
exchangers and showed good agreement between the 
theoretical and experimental results. However, only 
the shellside flow maldistribution was involved. 

Generally, flow maldistribution can take place on 
both shell and tube sides. The complicated shellside 
geometrical structure and manufacturing clearances 
induce non-uniform distributions of fluid such as leak- 
age, bypass and backmixing [8]. On the other hand, 

the tubeside fluid may not be evenly distributed 
among parallel channels in a pass because of different 
pressure drops in channels which is more severe for 
laminar flow. For fixed-tubesheet or floating-head 
type exchangers, the tubeside fluid is stirred in the 
headers and this effect on stationary and transient 
process cannot be described by the plug-flow model. 
In general, poor flow distribution causes degradation 
in performance of exchangers, especially for 
exchangers with greater number of heat transfer units 
NTU. 

Based on the dispersion model rather than the ideal 
plug-flow model, in the present paper a new method is 
developed to predict transient behaviour of multipass 
shell and tube heat exchangers subject to arbitrary 
temperature variations and step flow disturbances 
with regard to shell and tubeside maldistributions. In 
order to provide a versatile solution, the derivation 
involves the influence of heat capacities of both fluids 
and the capacities of shell and tube wall. Two different 
flow arrangements and arbitrary number and different 
size of tube passes are included. In addition, non-zero 
initial conditions are allowed. The Laplace transform 
is used to convert partial differential equations into 
ordinary differential equations and the temperature 
profiles in time domain are obtained by means of 
numerical inversion. 

2. MATHEMATICAL FORMULATION 

The following assumptions are necessary for mod- 
elling transient process of multipass shell and tube 
heat exchangers : 
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-__ 
1 

NOMENCLATURE I 

A heat transfer surface area [m*] .\’ dimensionless space coordinate, l/L I 

A, transverse area of flow [m’] z dimensionless time. t/r,i. 
c heat capacity [J Km ‘1 

I 

co+ ratio of U, to U,, U,jU, Greek symbols / 
n dispersion coefficient or apparent heat !j eigenvalues 

conductivity [W m ’ K ‘1 0 temperature [K] 
1 

.f,(z), ,fl(z) inlet temperature changes 0, reference temperature [K] 

F,(s), F,(s) transformed forms of ,f, (z) and ;. heat conductivity [Wm ’ K ‘1 also 
f?(z) in the image domain 

/ 

y,(x) initial conditions defined in equation (I I) 
cigenvalues ! 

o ratio of flow rates before and after a step / 
II heat transfer coefficient [W m ’ Key ‘1 flow disturbance 
I flow arrangement 1, as shown in Fig. I ? time [s] 
II flow arrangement II, as shown in r, residence time of fluid in the heat 

Fig. I exchanger [s]. 
1 distance of flow from the entrance of 

shellside fluid [m] Subscripts 
L total length of flow path [m] 0 initial state 
N number of tubeside passes 1 shellside fluid 
NTU number of transfer units [dimensionless] 2 tubeside fluid 
Pe P&let number defined in equations (7) c exit 

and (8) s shell 
s parameter of the Laplace transform W tube wall. I 
t dimensionless temperature, 

(0 - Mi(Q, - k?) Subscript I 
w thermal flow rate (heat capacity flow inlet 

rate) [W K ‘1 II exit. / 

J 

(1) All thermal properties are constant. l?‘O, 

(2) The heat transfer coefficient is constant within 
A,,D, ~~I’~ _ ci/, !;,! _ ;L ?!r’! 

any tubeside pass, but it may vary from pass to pass. 
(3) The effect of maldistribution can be described 

by a dispersion term in the energy equation. 
- >i, (!$I: (U , - O,,) - JyL (0, - 0,) = 0 (2) 

(4) The tube wall possesses the infinite and zero heat LI 

conductivity normal and parallel to the flow direction, 
respectively. 

A,&?;;’ &(_,)‘@,,?; _ ‘;? ‘;; 
/ i 

(5) The outside shell surface is adiabatic from the 
environment. 

-~L~-(f)2,-Owr)=0 (i= 1.2 ,..., N) (3) 

The scheme of multipass shell and tube heat 
exchangers (designated as 1 -N) is shown in Fig. 1, 

where the positive sign (+) and the negative (-) of 

where the origin-point of the coordinate system is 
(+) in equation (3) are valid for flow arrangement II 

always located at the entrance of shellside fluid. 
and flow arrangement I, respectively. With respect to 

Instead of the ideal plug-flow model, one applies the 
influence of heat capacities of shell and tube walls, the 

dispersion model to deriving the governing differential 
corresponding energy equations are as follows : 

equations. For this purpose, auxiliary variables 1, and 
i?, (i = 1,2,. , N) are introduced as follows : 

C$; -(hA),(O, -19,) = 0 (4) 

ri/f =ri/f) -LA I I 1 I qI D (“!!i 
’ (y . C, f;; -(kA),;(O, -O,,)-(hA),i(o,,-O,,) = 0 

6.1 
In equations (4) and (5) no axial conduction term 

In these two expressions the first term on the right exists since it may be neglected according to separate 

side corresponds to the convective part and the second calculations [9]. The coefficient D appearing in equa- 

term the dispersion part. Therefore, the governing tions (l)-(3) is called the axial (or longitudinal) dis- 

equations are written : persion coefficient (or apparent heat conductivity). 
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FIG. 1. Schematic representation of multipass shell and tube heat exchangers. 

As a matter of fact, it consists of the following two geometric dimension of exchangers. To facilitate 
parts : the heat conductivity I, of fluid and the eddy further derivation, residence times z,,, q2 and some 
diffusion coefficient & caused by flow maldistri- parameters are defined as follows : 
bution, i.e. L) = DC+&. If the flow is pure pIug 
flow and no eddy diffusion occurs, I& = 0. C, rep- C, C2 Czi 

z r1 - - 7 7fl - 
WI ’ 

-1 
resents the total heat capacity of the sheilside fluid W*’ 

&Pi = E’ 

which inciudes both the fluid part within the tube 
bundle and that between the bundle and the shell, Cli 
the heat capacity of the tubeside fluid remaining in 

R, +$: 
* 

tube pass i and inside the corresponding headers (if 
the fixed-tubesheet type or the floating-header type 
of tubeside construction is used), and Cwi the heat 

NTUl = tt; [ (hi), + &, 1 
-I U, U,R, - ~ 

= Ut + UzRz 

capacity of the wall of tube pass i. With regard to 
baffles and end plates, one can approximately dis- 

U1 25, 
W, 

U,=!$, 
2 

u,i 2?&, 

tribute the heat capacities of these components among 
all tube. passes. In this case, C,, is replaced by U =i W),i 

21 

c:i = CA1 +yJ 6) 

--Ej-’ 

c’, _ fk+ , Eti = W),i vii 
W, &qy=:v,’ 

where C$ is the apparent heat capacity of tube pass 
(h42i u2i G Gi 

i and yi a parameter for solid components such as 
E2i=<hA)z=~3 %i=c, Gvi=Cw 

baffles and end plates. The value of yi may vary with where 
tube pass. Thus, the influence of these components on 
transient performance of heat exchangers can be taken 
into account. If this influence is negligible, yi = 0. For 

(h-4) I = 2 W) ,i, (4, = 5 GW,i, 
i= I i= 1 

simplicity, the asterisk ‘*’ is omitted in the following 
analysis. The thermal flow rate pzi does not change C2==tC2i and C,=tCwi. 

from pass to pass, but the heat capacity Czi may be 
1= I i= I 

different among tube passes according to the given Obviously, there are the following relationships : 
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,;, h, = 1 and z,?, = a,, rrz. 

The other dimensionless parameters are defined as 

Insertion of the dimensionless space variable x = l/L, 
the dimensionless time z = ~/7~,, the dimensionless 

temperature t = (O- H,,)/(O,, -Q,J and the above- 
defined parameters into equations (1), (3), (4) and 
(5) yields : 

-,i, u,!(t, -k-U,(t, -t,) = 0 (7) 

- u2, ct2, -LO = 0 (8) 
^ 

Rw+ -r,,(t, -t,., ) -a2,(tr, -tw,) = 0 (9) 

^ 
RsRdItR,,);; - Us(t, -t,) = 0 (10) 

where Pe is the P&let number whose definition is 
given by Pe = wLiA,D. It quantitatively describes 
the efffect of maldistribution on transient behaviour. 

For plug flow D = 0 (heat conduction in fluid is gen- 
erally negligible) and Pe -+ co, so that equations (7)- 
(10) are reduced to the same form derived by the ideal 
plug-flow model [lo]. The actual flow pattern in heat 
exchangers interposes between axially unmixed plug 
flow and perfect axial mixing and the value of Pe lies 
in the range 0 < Pe < co. The general forms of initial 
temperatures are expressed by 

t,(x,O) =g,(x), t,(.Ko) =s.(x) 

t*z (x, 0) = .42, (-\-)> L, (x. 0) = YWL 0) 

(i= I,2 ,..., N). (II) 

All these functions are dependent on the temperature 
distributions at the instant of a new transient process. 
Equating the heat flux due to convention just outside 
the entrance (or exit) of heat exchangers with that due 
to convection and dispersion just inside the entrance 
(or exit) of heat exchangers [l I], one obtains the 
suitable boundary conditions pertinent to the dis- 
persion model. The shellside boundary conditions 
are : 

and 

7 t,-p;-g=f,(z) at.r=O 
I ’ 

(12) 

Similarly, one has the following tubeside boundary 
conditions. For flow arrangement I : 

and 

2t,N 
~2~ = 0 
2.X 

at x = 0 (odd N) or at .x = 1 (even N) 

(13) 

and for flow arrangement II : 

t 
1 (32, 

---~-=.f;(z) atx=O 
” - Pe,, c?.w 

and 

(?Z?_N 
~~ = 0 
2.X 

at s = 0 (even N) or at x = 1 (odd N) 

(14) 

where ,f, (2) and ,f2(z) indicate any arbitrary shell and 
tubeside inlet temperature variations, respectively. 
These changes may take place simultaneously or sep- 
arately. The other (2N-2) necessary conditions are 
interface conditions between adjacent tube passes at 
location I = 0 and x = I. They are listed in Table 1 
in which t2,.,+, represents the intermediate tem- 
perature of the tubeside fluid between two adjacent 
passes. 

If step disturbance of flow rates occurs, derivation 
becomes somewhat complicated. Using the subscript 
‘0’ to express the initial state before the step change, 
one defines (r , = u ,/u, ,, and o2 = gz, = u?~/u~,~. If flow 
patterns remain the same, i.e. laminar or turbulent 
before and after the disturbance, the heat transfer 
coefficient h , and hzt can be expressed as 

h, = cr?lh,” and h,, = a’i+h,,, (15) 

where the exponent n, depends upon the value of the 
Reynolds number, the geometric characteristics and 
the arrangement of tube bank. The average value is 
II, = 0.63 for in-line bank and n , = 0.6 for staggered 
bank in the range 10” < Re, < 2 x IO’. The exponent 
n, depends upon the flow pattern in tubes and nz = 0.8 
for fully developed turbulent flow in a smooth circular 
tube. The thermal flow rates I@,, fii/,, and other afore- 
defined parameters are rewritten as follows : 

Pi/, = Hf,,rJ,, w, = w~“az 
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Table 1. The interface conditions for t&, z) 

x=0, z>O 

t2C = ‘z;+ I = fz,,, I 

i atzi 1 ah+, --=-__ 
pez, ax hi+ I ax 

x=1, z>o 

t2i = t2,+ I = f2i.i+ I 

i atzi 1 ah+ I 
Pe2, ax Pezi+, ax 

even N 

i=l,3,...,N-1 

i = 2,4, . , N-2 

odd N 

i=l,3,...,N-2 
i=2,4,...,N-1 

i = 2,4,. , N-2 

i=l,3,...,N-1 

i=2,4,...,N-1 
i = 1,3,. . , N-2 

If there are only temperature changes at inlets, 
cr, = cz = 1 and all the above-mentioned parameters 
are constant ; otherwise cr, # 1 and cr2 # 1. For 
(2N+2) partial differential equations (7)-(lo), the 
Laplace transform is used to reduce the number of 
the equations. Using s as the Laplace parameter with 
respect to the dimensionless time z, one obtains the 
following transformed equations under the general 
initial conditions (11) : 

d2T, 

dX2 
-Pe,z=Pe, s+U,fU, 

( 

-if 
Eli%iUI U,’ 

i=, a,,+cc,,+R,,s - R&(1 +%zb+ us > 
T, 

-Pe, f 
E li”2iul 

1-1 al~+a2i+Rwis 
T2r+h,W (16) 

d2 T2r dT,i 
--T_+(-l)iPe,,x 
dx 

Pe2ie2ia JJ2 
=-- 

Cl,i+tl2i+R,iS 
T, 

- Pe2; 
EZP2i u2 

a,i+a,j+R,is 
-E,~R~s-E~J~ T2i 

> 

+/r,,(x) (i= 1,2 )...) N) (17) 

T,,ri = 

(18) 

UsT, 
Ts = R,R,(l +R&+ U, 

+ hs (4 (19) 

where 

h,(x) = --Pel g,(x)+ f i= , u ,i +:$R,;s gwi(x) 

U,R,Rw(l +R,,) 

+ us+RRvU +%ds 
g,(x) > 1 

h&3 = --Pe2, Eci&gzi(x)+ U,iRvi 
cc,i+~2ifRw;~gwi(X) ’ 1 

By introducing the following variables 

Tr =z and Fri=z (i=1,2 ,,,,, N), 

equations (16) and (17) are replaced by (2N+ 2) first- 
order differential equations which are expressed in 
matrix notation 

dT 
dx = AT+H(x) (20) 

where vector 

T=(T2,rT22,...,T2N,~2,1,~222,...r~.2N,T,,~,)T 

H(x) = [O,O, . . . , h2,(x),h22(.~),...,h2N(x),0,h,(x)lT 

and A is a (2N+2) x (2N+2) matrix whose elements 
are given by equations (16) and (17). Since A is a 
constant matrix, one is able to find the closed solution 
to equation (20). With (2N+2) eigenvalues {fl,} 
(j= 1,2,..., 2N+2) of A and the corresponding 
eigenvectors {u,}, one can build the solution to equa- 
tion (20) although equation (20) is a boundary value 
problem rather than an initial value problem. A 
general form of the solution yields 

T = eAXD*+eAX 
s 

emAx’H(x’)dx’. (21) 

Since eAx = U eBX U- ’ and eAx D* can be always 
converted into U eBX D, one has 

T = U esX D + 
s 

U eBCXeX’) U- ‘H(x’) dx’ (22) 

where eBX is a diagonal matrix, i.e. 

eBX = diag (eBIX, e81X,. . . , eBZN+2X), 

U is a (2N+2) x (2N+2) matrix whose columns are 
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the corresponding eigenvectors, i.e. U = {II,, u*,. , 
u~,~+~) and D (or D*) is a coefficient vector which 
must be determined according to the boundary con- 
ditions. The necessary condition of solution (21) or 
(22) is that all eigenvalues are distinct. In general. the 

eigenvalues of A in equation (20) describing transient 
behaviour of multipass shell and tube heat exchangers 
are different from each other. If there exist some eigen- 
values of multiplicity m (m > I), one must build anew 
the solution to equation (20) and it is a somewhat 
awkward task. An approximation method can avoid 
such a difficulty. Introducing an infinitesimal par- 
ameter 6 (for example 6 = IO “), one changes the 
value of a, by adding or decreasing 6 under the con- 
straint c E, = 1, so that one may have distinct eigen- 
values again. Such a slight change of c, causes almost 

no changes of calculated temperature profiles and the 
overall accuracy is not affected. 

Insertion of the boundary conditions (12)--( 14) and 
the interface conditions listed in Table 1 into equation 

(22) leads to the following matrix equation 

WD=F+S (23) 

where W is a (2N+2) x (2N+2) matrix whose 
elements are prescribed by the aforementioned deter- 
minant conditions. It varies with number N of 
tube passes as well as flow arrangement. Vector 
F = [O,O, , F*(Z), F,(z)]’ if the inlet conditions are 
placed in the last two rows of matrix equation (23). 
and vector S = (s,, s2,. , s?,~+ z)” is determined by 
the second term on the right side of equation (22), i.e. 
s, = 0 or s, takes the integration value from Y = 0 
to 1. The position of s, in vector S corresponds to 
arrangement order of matrix W. Therefore. the 

coefficient vector D follows 

D = W ‘(F+S). (24) 

So far the transformed temperature profiles and 
temperature gradients of both fluids in the Lapiace 
image domain have been found. Their explicit 

expressions are 

z,Y+ 2 
T,(x, s) = 1 d, u,, e”)” 

in different forms according to the instant state of 
transient process. Three typical forms of the initial 
temperature profiles are described as follows. 

(I) Un@m initial conditi0n.s 

This kind of initial conditions is the simplest 
case. Zero conditions g,(.x) = g,(x) = 0 and 

gz,(_w) = yu.,(x) = 0 make equation (20) homogeneous 
and its general solution is 

T = U e” D. 

(2) Non-zero steady-state distributions ,jbr ink tem- 

peruture variations 

If only temperature changes take place at mlets 
after the preceding process has reached a stationary 
state, one can find the solution vector T by means of 

the principle of superposition. In this case, thermal 
flow rates ci/, and ci/,, as well as heat transfer 
coefficients h, and h?, are constant and the same sys- 
tem of governing differential equations can be used to 
describe both the previous steady-state process (by 
eliminating derivatives of temperature via time) and 
transient process. Assuming 

or 

T,,(s. s) = ,y,,(x) +@,,,(x. s) (m = I. s, 3i and wi) 

(17) 

one inserts them into equations (7))(10) and the per- 
tinent determinant conditions, bearing in mind the 
fact that 

are steady-state solutions of the preceding process as 
z + LX. Therefore, transient parts c$,,( Y, z) are 
described by 

and H(x), respectively. From expression (25). one can 
easily determine the transformed responses at exits. - (!2,(bZI-~wr) = 0 (i = I, 2.. . N) (29) 

The related profiles in tube walls and shell are already 
given by equations (18) and (19). 

R c’&C 
UI -cc,,(9,-(Pw~)-a,,(~,,-(~MI) = 0 

?z 

(i = 1.2, . N) (30) 
3. INITIAL CONDITIONS 

Function hk(,x) in equation (25) consists of initial (31) 

temperature distributions g,(x), gs(x), gzi(x) and 

R,R,(I+R,,);;‘-b’,(&-&) =O. 

g,,(x). These temperature distributions may appear The zero initial conditions for $,,(x. z) are 
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and 

4,(&O) = #&O) = 0 

&(x,0) = (b,&, 0) = 0 (i = 1,2,. . , N) (32) 

and the inlet boundary conditions yields 

~,-~~=f,(~)-(g~-~~) atx=O 

and 

WI ds, -= ---0 &x=:1 
ax dx (33) 

For flow arrangement I : 

atx=O 

wN -- = 
3X 

- de = 0 at x = 1 for even N 

or at x = 0 for odd N (34) 

and for flow arrangement II : 

atx=O 

a9bN 
-= -%=O atx=OforevenN ax 

or at x = 1 for odd N. (35) 

In general, the steady-state solution g,(x) and g&x) 
are determined under the following dimensionless 
inlet conditions 

1 ds, 
g,-Ez= 1 atx=O 

i 

g,,+&$$=O atx=O (I) 

and 

g,, - & $Gi = 0 at x = 1 (II). 

Thus, the inlet conditions for Q, ,(x, z) and (pli(x, z) are 
simplified as 

+I-j&!&=/,(z)-1 atx=l (36) 
I 

42i+&5&=_f2(z) atx= 1 (I) 

or 

9+&e&= f&) atx = 0 (II). (37) 

without question a homogeneous system of ordinary 
differential equations according to the uniform initial 
conditions (32). Following the afore-described pro- 
cedure, one is able to find a transformed solution 
Q,(x,s) whose form is similar to equation (26). and 
then T,(x,s) from equation (27). In this way, the 
tedious task of calculating the inverse matrix U ’ is 
avoided. 

(3) Non-zero steady-state distributions for inlet tem- 
perature andflow rate variations 

Because of flow disturbances, themal flow rate @‘, 
and pzi as well as heat transfer coefficients h, and hzi 
are subjected to corresponding changes. The pre- 
ceding treatment for pure temperature variations is 
not applicable. Here one should resort to expression 
(22) or (25). In this case, general forms of initial 
distributions can be expressed as 

2N+2 

g,(x) = c dIu2N+,jeX~" 
j=, 

and 
z.N+ 2 

g2,&) = x d,u,e’Q (n = 1,2,. . . , N) (38) 
j= I 

where {A,) and (II,> are (2N+2) eigenvalues and the 
corresponding eigenvectors, respectively. (d,] are 
(2N+2) coefficients determined from the subjected 
boundary and interface conditions. Stationary tem- 
perature profiles in shell and tube wall are 

and 

g,(x) = 91 (x) 

Henceforth, the non-homogeneous parts in equations 
(16~( 19) as well as in matrix equation (20) are already 
known. Having carried out some derivations, one 
finds the explicit transformed transient responses to 
both arbitrary temperature variations and step flow 
rate disturbances under the non-zero initial conditions 
which corresponds to the steady-state temperature 
distributions of a previous process 

mt 2 

T.(x,s) = 1 d,Uije@ 
,= t 
2N+2 2N4.2 2N+ 2 

+ 1 c UikVkm 1 

m=l k=, ,=f 

%zj~j~~ 

where 

(i = 1,2,. . . ,;N;2) (39) 

By means of the Laplace transform, one does obtain I<m<N, I,<j,<2N+2, 
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Table 2. The interface conditions for d2,(.\-. :) 

cvcn N 

i-1.3... ~.?%~-I 

I-3,4,...,:v-2 

odd N 

I = 1, 3,. 1 ,V_~2 
i=2,4 ,..../ V--I 

w,,,, = 0 for other m and I < i < 2N + 2. 

4. TRANSIENT RESPONSE 

The inversion of the Laplace transform must be 
performed to obtain real-time transient responses of 
heat exchangers from the afore-derived solutions in 
the image-domain. It is almost impossible to carry out 
analytical inversion of transformed solutions (25) 01 

(39) and one should resort to techniques of numerical 
inversion. Two numerical algorithms have been used 
to calculate transient temperature profiles and tube 

heat exchangers (10, 121. One is called the Gaver 
Stehfest algorithm and the other uses Fourier series 
approximation. For the sake of consistence, they are 

transcribed as follows : 

(I ) Gaver-Stehfcst algorithm [ 131 

f(z) = !!2 ; K,,,F (M must be even) 
_’ ,>,-I 

K,,, = ( _ 1 )‘I’+ ‘1 - 

mln,rri.,v 2, 

x c _~~~ k”’ ‘(2k)! 

i_,,,7j, ,,,21(M/2-k)!k!(k-I)!(m--)!(2k-nl)!. 

(40) 

(2) Numerical inversion based on Fourier series [ 141 

Constant LI is generally chosen jn the range 

4 < LIZ < 5, so that the truncation error can be con- 
sidered to be small enough. As pointed out in the 
previous work, the first algorithm needs much less 
computation time than the second does, but it may 
Pail to predict transient responses to inlet changes 

with oscillatory components. In this case the second 

algorithm IS more suitable. According to the type of 
given inlet variations, either of these two algorithms 
is selected to determine transient behaviour of heat 
exchangers. The inverse results as I --t x correspond 
to steady-state temperature distributions. 

5. EXAMPLES AND DISCUSSIONS 

By means of the numerical algorithms of inversion. 
one can promptly find transient temperature profiles, 
no matter whether the initial conditions are uniform 
or not and no matter how complicated the trans- 
formed solution is. In order to show the application 
of the above-developed method. some examples are 
illustrated in Figs. 24 under parameters R, = 1. 
CT, = U1, R, = 0.2 and coef’ = 0.1. Figure 2 describes 
the shellside temperature distribution t I (x, z) subject 
to a step temperature change in a counterflow 
exchanger. The curved surface in the diagram evi- 
dently shows how the temperature wave propagates 
from the inlet to the exit (from the high to the low). 

FIG. 2. Shellside temperature distribution 12(x, z) subject to 
a step temperature variation in a counterflow heat exchanger 
(R, = I. R, = 0.4, NTU, : 2.5, PC, = 4, Pel = IO. 

(r, = 6: = I,.f,(z) = I and f?(z) = 0). 
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FIG. 3. Superposition of exit responses to periodic inlet 
temperaturesf,(z) = sin t and fr(z) = sin 1.5~ in a l-2 heat 
exchanger with flow arrangement I (E,, = e,r = 0.5, 
eZ, = E>* = 0.5, E,, = Q = 0.5, E,, = E,* = 0.5, R, = 1, 
R, = 0.6, Per = 4, Pez, = Pezz = 10, c, = u2 = 1). (a) 

Shellside fluid ; (b) tubeside fluid. 

FIG. 4. Exit responses to step disturbances of flow rates in 
a 14 heat exchanger with flow arrangement II 
(E~~=E~~=E,~=E,~=~.~~, E~,=E~~=E~,=E~~=~.~~, 
9, = CC2 = ECj = EC4 = 0.25, &, = &r = 8,) = E,d = 0.25, 
R,,, = 1, R, = 0.4, Pe, = 6, Pe2, = Pe,, = Pe,, = Pe,, = 8, 
(r, = 0.6, or = 1.2, f,(z) = 1 and fr(z) = 0). (a) Shellside 

The temperature steeply increases in the range z < 3 
and the performance approaches a stationary state for 
z > 10. The slope of profile t ,(x, z) depends mainly 
upon R,, NTU,, and P&let numbers. 

Figure 3 introduces an example in which two sine 

temperature waves f,(z) = sin z and fi(z) = sin 1.5~ 
are respectively generated at the shell and tubeside 
inlets of an exchanger with two tube passes. The shell- 
side response at the exit is shown in Fig. 3(a) and 
the tubeside response in Fig. 3(b). The remarkable 
attenuation and superposition of two temperature 
waves take place for greater values of NTU,, especially 
for NTU, > 1. In such cases the interference of two 
waves with different periods may greatly cut down the 
amplitude of the synthesised wave. The curves show 

(a) shellside fluid 

4.0 

1.0 

0.5 

NTU, o-O.1 
\ 

fluid ; (b) tubeside fluid. 

that the damping function of both fluids and tube wall 
depends upon not only values of heat capacities but 
also the value of NTU]. The damping increases with 
greater NTU, and the amplitude at the exit becomes 
lower. The effect of the shell on transient process has 

the similar feature, too. In brief, one should dis- 
tinguish the effect of such solid components as tube 
and shell on transient behaviour according to both 
values of heat capacities and heat transfer coefficients 
between these components and fluids. 

An example of step disturbances of flo% rates 
(a, = 0.6 and o2 = 1.2) is plotted in Fig. 4. In this 
example the non-zero initial conditions are identical 
to the steady-state temperature distributions of the 
previous process. The curves in Figs. 4(a) and (b) 
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FIG. 5. Effect ofthe P&let number Pl,, on transient behavlour 
in a counterflow heat exchanger (R, = 0.8, R, = 0.3. Pe, = 2, 

Pv2 = 60. rr = 0: = I, f’,(z) = I and fz(r) = 0). 

represent the shell and tubeside exit responses of an 
exchanger with four tube passes in flow arrangement 
II. The value of t2, or t,, at z = 0 corresponds to 
thermal effectiveness of the previous process. These 
curves show that a decrease of shellside flow rate 
causes reduction of exit temperatures and that this 
reduction becomes more considerable for 

NTU, > 0.1, as expected. Obviously. the transient 
process resulting from step disturbance of flow rates 
already approaches a new stationary state for I > 8. 
Both Figs. 4(a) and (b) show an accurate energy bal- 
ance (R,(l -t,,) = t,, for r > 10) between shell and 
tubcside fluids at the steady state, which provides a 
proof that the afore-derived method is feasible to prc- 

diet transient behaviour of multipass shell and tube 
heat exchangers. 

As previously pointed out, maldistribution incurs 
degeneration of thermal performance of exchangers 
and the measure of flow maldistribution is the P&let 
number (here Pe, and Pezr). Figure 5 illustrates tubc- 
side exit temperature at z = 1.5 vs NTC’, cor- 

responding to different values of Pe, and shows how 
the maldistribution exerts its infuencc on transient 
behaviour. The quantitative description in Fig. 5 
reveals that the effect of maldistribution is considcr- 
ably strong if Pe, < 25 and this effect increases with 
increasing NTU,. With regard to possible maldistri- 
bution, designers must provide exchangers with a 
higher value of NTU and measures against the occur- 
rence of maldistribution to reach the specified effec- 
tiveness. On the other hand. the effect of mal- 
distribution is negligible if Pr, > 55. In fdCt. the dis- 
persion model is almost identical to the conventional 
plug-flow model for PC> > 55. In other words, appli- 
cation of the dispersion model is of importance for 
smaller Pe,, especially for PCJ, < 25. It is predicted 
that the effect of Pe2, is identical to that of PC,. For 
tubeside laminar flow. the effect of maldistribution 
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becomes more evident and application of the dis- 
persion model to tubeside fluid is of greater meaning. 

Setting N = 1. one finds that forms of dimensionless 
governing equations (7)-(10) are similar to those 
describing heat exchange process in fixed-matrix 01 
rotary regenerators. Therefore, the method developed 
in this paper can be used to determine temperature 
profiles and thermal effectiveness of regenerators. 
There the value of NTU is normally considerably great 
(NTU > I U) and the ctfect ofmaldistribution become> 

mot-c intensive if flow maldistribution occurs. and 

then the dispersion model will bc more suitable and 
more powerful than the conventional plug-tlou 

model. 

6. CONCLUSIONS 

Based on the dispersion model rather than the ideal 

plug-flow model, an efhcient and versatile method of 
predicting transient behaviour of multipass shell and 

tube heat exchangers has been dcvcloped. Taking the 
effect of shell and tubesidc flow maldistribution and 
the influence of heat capacities of fluids as well as solid 
components such as shell, tube wall, baffles and end 
plates into account, the method can handle transient 
responses to arbitrary temperature variations and step 
disturbances of flow rates which may occur sim- 
ultaneously or separately and on tither or both sides. 
Three typical types of initial conditions have been 
discussed in detail. According to the type of the given 
initial conditions, one can choose a simple and con- 
venient calculation proccdurc. The Laplace transform 
has been used to carry out simulation of heat process. 
In order to obtain the final solution in real timc- 
domain. the numerical inversion of the Laplace trans- 
form has been applied. Two different algorithms have 
been introduced. One should select tither of them in 
correspondence with types of mlet variations 
to determine transient responses accurately and 

promptly. 
Flow maldistribution hinders transient responses 

to any inlet changes and decreases thermal cffec- 
tiveness of heat exchangers. Its effect becomes more 
remarkable with increasing NTC’. The P&let number 
has been used to quantitatively describe this kind of 
cff‘ect. The calculation has shown that the dispersion 
model should be applied instead of the plug-flow 
model if Pe < 55. 
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